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ABSTRACT 

The purpose of this paper is to prove a common fixed point theorem for two selfmaps on a D*–metric space 

and deduce a common fixed point theorem for two selfmaps on a compact D*–metric space. Further we 

show that a common fixed point theorem for two selfmaps of a metric space prove by Brian Fisher ([5]) is 

a particular case of our theorem. 
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INTRODUCTION AND PRELIMINARIES 

 Fixed point theory is a fundamental area in nonlinear functional analysis, offering powerful tools 

for solving a wide range of problems across mathematics and applied sciences. The pioneering 

work of Banach on contraction mappings laid the foundation for this field. His celebrated fixed 

point theorem guarantees the existence and uniqueness of fixed points for self mappings in 

complete metric spaces and ensures convergence via Picard iteration. Over the decades, this 

classical result has inspired numerous generalizations to broader classes of mappings and more 

generalized spaces.  

 

Different mathematicians tried to generalize the usual notion of metric space (X, d). In 1992 Dhage 

[2] has initiated the study of generalized metric space called D- metric space and fixed point 

theorems for selfmaps of such spaces. Later researchers have made a significant contribution to 

fixed point of D- metric spaces in [1], [3], and [4]. Unfortunately almost all the fixed point 

theorems proved on D-metric spaces are not valid in view of papers [6], [7] and [8].  

 

Recently Shaban Sedghi, Nabi Shobe and Haiyun Zhou [9], have introduced D*- metric spaces as 

a probable modification of D- metric spaces and proved some fixed point theorems. 
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Definition 1.1([9]):  Let X be a non-empty set. A function D*: X3 → [0, ∞) is said to be a 

generalized metric or D*-metric or G-metric on X, if it satisfies the following conditions 

(i) D *(x, y, z) ≥ 0 for all x, y, z ∈ X. 

(ii) D *(x, y, z) = 0 if and only if x = y = z. 

(iii) D *(x, y, z) = D *(σ (x, y, z)) for all x, y, z ∈ X 

             where σ (x, y , z) is any permutation of the set {x, y , z}. 

(iv) D *( x, y , z ) ≤  D *(x , y , w )+ D *(w, z , z) for all x, y , z , w ∈ X .  

 

The pair (X, D *), where D * is a generalized metric on X is called a D*–metric space or a 

generalized metric space. 

 

Example 1.2:  Let (X, d) be a metric space. Define D1*: X3 → [0, ∞) by  

D1*(x, y, z) = max {d(x, y), d(y, z), d (z, x)} for x, y, z ϵ X. Then (X, D1*) is a generalized 

metric space. 

 

Example 1.3: Let (X, d) be a metric space. Define D2*: X3 → [0, ∞) by  

D2*(x, y, z) = d(x, y) + d(y, z) + d (z, x) for x, y, z ϵ X. Then (X, D2*) is a generalized 

metric space. 

 

Example 1.4: Let X = R, define D*: R3 → [0, ∞) by  

                       D *(x, y, z) = {     
0                     𝑖𝑓 𝑥 = 𝑦 = 𝑧

max  {𝑥, 𝑦, 𝑧} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then (R, D *) is a generalized metric space. 

 

Note 1.5:  Using the inequality in (iv) and (ii) of Definition 1.1, one can prove that if   (X, D *) is 

a D*–metric space, then 

  D *(x, x, y) = D *(x, y, y) for all x, y, ∈ X. 

Infact D *(x, x, y) ≤ D *(x, x, x) + D *(x, y, y) = D *(x, y, y) and 

D *( y , y , x ) ≤  D *( y , y , y )+ D *(y , x , x ) = D *(y , x , x),  proving the inequity. 

Definition 1.6:  Let (X, D*) be a D*-metric space. For x ϵ X and r > 0,  the set                            

BD*(x, r) = {y ϵ X; D*(x, y, y) < r} is called the open ball of radius r about x.  

For example, if X = R and D*: R3 → [0, ∞) is defined by  

D*(x, y, z) = | x – y | + | y – z | +| z - x| for all x, y, z ϵ R. Then 

BD*(0, 1) = {y ϵ R; D*(0, y, y) < 1} 
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                = {y ϵ R; 2| y | < 1} 

                ={y ϵ R; | y | < ½} = (- ½, ½). 

Definition 1.7: Let (X, D *) be a D*–metric space and E ⊂ X.  

(i) If for every x ∈ E, there is a δ > 0 such that BD* (x, δ ) ⊂ E, then E is said to be   

            an open subset of X 

(ii) If there is a k > 0 such that D *(x, y, y) < k for all x, y ∈ E then E is said to be  D*–

bounded. It has been observed in [9] that, if τ is the set of all open sets in (X, D*), 

then τ is a topology on X (called the topology induced by the D*–metric) and also 

proved that BD* (x, r) is an open set for each x ∈ X and r > 0 ([9], Lemma 1.5). If 

(X, τ) is a compact topological space we shall call (X, D *) is a compact D*–metric 

space. 

Definition 1.8:   Let (X, D *) be a D*–metric space.  A sequence {xn} in X is said to  

(i) converge to x if  D *(xn , xn , x ) = D *(xn , x , x) → 0 as n →∞  

(ii) be a Cauchy sequence, if to each ∈ > 0, there is a natural number n0  

             such that D *(xn , xn , xm ) < ∈ for all m , n ≥ n0 . 

 

It is easy to see (infact proved in [9], Lemma 1.8 and Lemma 1.9) that, if {xn} converges to x in(X, 

D*) then x is unique and that {xn} is a Cauchy sequence in (X , D*). However, a Cauchy sequence 

in a (X, D *) need not be convergent as shown in the example given below. 

 

 Example 1.9:  Let X = (0, 1] and D *(x, y, z) = | x – y | +| y – z | + | z – x | for x, y, z ∈ X, so that 

(X, D *) is a D*–metric space. 

Define xn =  
1

𝑛
  for n = 1, 2, 3 ……., then                                                                                                                                                    

D *( xn , xn , xm ) = 2 | xn – xm | = 2 |  -  |, so that 

D *( xn , xn , xm ) → 0 as m, n → ∞, proving {xn} is a Cauchy sequence in (X, D*). Clearly 

{xn} does not converge to any point in X. 

Definition 1.10:  A D*–metric space (X, D *) is said to complete if every Cauchy sequence in it 

converges to some point in it.  

 

It follows that the D*–metric space given in Example 1.9 is not complete.  

 Note 1.11:  We have seen (In Example 1.2 and Example 1.3) that on any metric space (X, d), it is 

possible to define at least two D*–metrics, namely D1* and D2 *, using the metric d. We shall call 

http://www.ijuse.in/


International Journal of Universal Science and Engineering                                   http://www.ijuse.in  

(IJUSE) 2016, Vol. No. 2, Jan-Dec                                             e-ISSN: 2454-759X, p-ISSN: 2454-7581 

149 

 

INTERNATIONAL JOURNAL OF UNIVERSAL SCIENCE AND ENGINEERING 

 

D1 * and D2 * as D*–metrics induced by d. Thus every metric space (X, d) gives rise to at least 

two D*–metric spaces (X, D1 *) and (X, D2*). Also if (X, D *) is a D*–metric then defining d0 (x, 

y) = D *(x, y, y) for x, y ∈ X, we can show easily that (X, d0) is a metric space and we shall call d0  

as a metric induced   by D *. 

The following result is of use for our discussion. 

 Theorem 1.12:  Let (X, d) be a metric space and Di *(i =1, 2) be the two D*– metrics induced by 

d (given in Example 1.2 and Example 1.3).  For any i (=1, 2) a sequence {xn} in (X, Di *) is a 

Cauchy sequence if and only if {xn} is a Cauchy sequence in (X, d). 

 

 Proof: - First note that for i =1, 2 we have 

 d ( x , y ) ≤  Di *(x , y , y ) ≤  2d (x , y) for all x, y  ∈ X . 

 

 Now the theorem follows immediately in view of the above inequality. 

 

  For example, if {xn } is a Cauchy sequence in (X , d ), then for any given ∈ > 0 choose a 

natural number n0 such that m, n ≥ n0   implies d ( xm, xn) <  ; and note that for the same n0 we 

have   

m, n ≥ n0   implies  Di *(xm , xn , xn ) ≤ 2d (xm xn ) < ∈,  

proving that {xn } is a Cauchy sequence in (X , Di *). 

 

Similarly the other part of the theorem can be proved using the other inequality noted in 

the beginning of the proof. 

 Corollary 1.13:  Suppose (X, d) is a metric space. Let D1 * and D2 * be two D*– metrics induced 

by d, then for any i (=1, 2) the space (X, Di *) is complete if and only if (X, d) is complete.  

Proof: - Follows from Theorem 1.12. 

Definition 1.14:  If (X, D*) is a D*-metric space, then D* is a continuous function on X3, in the 

sense that (xn, yn, zn ) = D*(x, y, z), whenever  {(xn, yn, zn)} in X3 converges to (x, y, z) 

 X3. Equivalently,       

             n= x, n= y, n= z (xn, yn, zn ) = D*(x, y, z).   

 

              Notation: For any selfmap T of X, we denote T(x) by Tx.  

http://www.ijuse.in/
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                 If S and T are selfmaps of a set X, then any z ∈ X such that Sz = Tz = z is called a 

common fixed point of S and T. 

Two selfmaps S and T of X are said to be commutative if ST = TS where ST is their 

composition SoT defined by (SoT) x = STx for all x ∈ X. 

            Definition 1.15: Suppose S and T are selfmaps of a D*–metric space (X, D*) satisfying the condition    

T(X) ⊆ S(X). Then for any x0 ∈ X, Tx0 ∈ T(X) and hence Tx0 ∈ S(X), so that there is a x1 ∈ X with 

Tx0 = Sx1, since T(X) ⊆ S(X). Now Tx1 ∈ T(X) and hence there is a x2 ∈ X with Tx2 ∈ T(X) ⊆ S(X) 

so that Tx1 = Sx2.  Again Tx2 ∈ T(X) and hence Tx2 ∈ S(X) with   Tx2 = Sx3. Thus repeating this 

process to each x0 ∈ X, we get a sequence {xn} in X such that Txn = Sxn+1 for   n ≥ 0. We shall call 

this sequence as an associated sequence of x0 relative to the two selfmaps S and T. It may be 

noted that there may be more than one associated sequence for a point x0 ∈ X relative to selfmaps 

S and T. 

 

          Let S and T are selfmaps of a D*-metric space (X, D*) such that T(X) ⊆ S(X). For any     xo 

ϵ X, if {xn} is a sequence in X such that  Txn = Sxn+1 for    n ≥ 0, then {xn} is called an associated 

sequence of x0 relative to the two selfmaps S and T.  

Definition 1.16 :  A function Ø: [0,∞) → [0,∞) is said to be a  contractive modulus, if            Ø(0) 

= 0   and   Ø(t)  < t for t  >  0. 

Definition 1.17: A real valued function Ø defined on X ⊆ R is said to be upper semi continuous, 

if lim
𝑛→∞

sup Ø(𝑡n) ≤ Ø (t) for every sequence {tn} in X with tn → t as n → ∞. 

Definition 1.18: If S and T are selfmaps of a D*-metric space (X, D*) such that for every sequence 

{xn} in X with lim
𝑛→∞

𝑆𝑥n = lim
𝑛→∞

𝑇𝑥n = t, we have  

lim
𝑛→∞

𝐷*(STxn, TSxn, TSxn) = 0, then we say that S and T are compatible. 

 

THE MAIN RESULTS 

Theorem. Suppose S and T are selfmaps of a D*–metric space (X, D*) satisfying the                          

conditions  

(i) T ( X ) ⊆ S ( X )  

(ii) D *(Tx, Ty, Ty) ≤ β (x, y) for all x, y ∈ X ,  

where 
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 (ii)′ β ( x , y ) = max{D *(Sx, Sy, Sy), D *(Sx, Tx, Tx), D *(Sy, Ty, Ty), 

                                                        [D*(Sx, Ty, Ty) + D*(Sy, Tx, Tx)]} 

(iii)      S and T are continuous.  

(iv)      the pair (S , T ) is compatible,  

              and 

(v) there is a point x0 ∈ X  and an associated sequence {xn } of x0  relative to the two              

selfmaps such that the sequences {Txn } and {Sxn } converge to some point z ∈ X  

Further, if     

(vi) there exists (p, q)  X2  such that f(p, q) =  ,  

where  

(vi)′ f(x, y) =     

then S and T have a unique common fixed point  z ϵ X. 

Proof:  First suppose that (x, y)   0 for all x, y  X, so that f(x, y) is well defined. Now 

by the inequality (ii), we find that f(x, y)  1 for all x, y  X. Hence if c = f(p, q) then c

1, so that f(x, y)  c for all x, y  X and therefore D*(Tx, Ty, Ty)  c (x ,y)  

From (v), we get 

 

(2.1.1)  Sx2n, Tx2n, Sx2n+1 and Tx2n+1 z as n → ∞ 

 Now, since S, T are continuous, we have by (2.1.1) 

           S2x2n Sz, and STx2n+1 Sz as  n → ∞ 

Since the pair (S, T) is compatible, we have, in view of (2.1.1) that 

(STx2n+1, TSx2n+1, TSx2n+1 ) =0,  

TSx2n+1  Sz  as n .  

 

Also from (ii), we have  

(2.1.2)  D*(TSx2n+1, Tx2n, Tx2n) ≤  β(Sx2n+1,x2n),  

where  β(Sx2n+1,x2n) = max { D*(S2x2n+1, Sx2n, Sx2n), D*(S2x2n+1, TSx2n, TSx2n),    

 D*(Sx2n, Tx2n, Tx2n), [D*(S2 x2n+1, Tx2n, Tx2n) + D*(Sx2n, TSx2n+1, TSxn+1)]} 

which on letting n to ∞ and using the continuity of D*  gives  
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 (Sx2n+1, Tx2n) = max {D*(Sz, z, z), D*(Sz, Sz, Sz), D*(z, z, z), 

                                                                       [D*(Sz, z, z) + D*(Sz, z, z)]}  

                                     = D*(Sz, z, z) 

 

 

Therefore letting n to ∞in (2.1.2), and using the above we get 

(2. 1. 3) D*(Sz, z, z)  D*(Sz, z, z). 

Now, if Sz ≠ z, then D*(Sz, z, z) > 0 and by the definition, we get                            D*(Sz, 

z, z) ˂ D*(Sz, z, z), contradicting (2.1.3) 

 Thus we have Sz = z. 

 

Now again from (ii) we have  

(2.1.4)  D*(Tz,Tx2n, Tx2n )  ≤  β(z,x2n) 

where  β(z,,x2n)=max{D*(Sz,Sx2n,Sx2n), D*(Sz, Tz, Tz), D*(Sx2n,Tx2n,Tx2n),          

 [D*(S z,Tx2n,Tx2n) + D*(Sx2n,Tz,Tz)]}, in which on 

letting n to ∞ and using Sz = z, the continuity of D* and the condition (v), we get  

(z,,x2n) = max {D*(Sz, z, z), D*(z, Tz, Tz), D*(z, z, z), 

                                          [D*(S z, z, z) + D*(Sz, z, z)]} 

                           = D*(z, Tz, Tz) 

Again letting n to ∞in (2.1.4), and using the above we get                                         D*(Tz, 

z, z)   D*(Tz, z, z) 

and this will be contradiction if Tz ≠ z,  therefore  Tz = z. Thus z is a common fixed point 

of S and T. 

 

To prove that z is unique, if possible suppose that z' is another   common fixed point of S 

and T. Then from (ii), we have  

(2.1.5)  D*(z, z', z') = D*(Tz, Tz', Tz') ≤  β(z, z') 

where β(z,, z') = max {D*(Sz, z', z'), D*(z, Tz, Tz), D*(Sz', Tz', Tz'), 

                              [D*(S z, z', z') + D*(Sz', Tz, Tz)]} 

                       = D*(z, z', z') 

so that (2.1.5) gives D*(z, z, z')  D*(z, z, z') and this will give a contradiction if z ≠ z'.  
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Therefore z = z'. Thus z is the unique common fixed point of S and T. 

Now suppose that β(x', y') = 0  for some  x', y'  X. Then     

max{D*(Sx', Sy', Sy'), D*(Sx', Tx', Tx'), D*(Sy', Ty', Ty'), 

                                                  [D*(Sx', Ty', Ty') + D*(Sy', Tx', Tx')]} = 0,  

 which implies  

(2.1.6)  Sx' = Tx' = Sy' = Ty' 

 Then STx' = S(Sx') = S2x' = SSy'.  Since the pair (S, T) is compatible  

(2.1.7)  (STxn, TSxn, TSxn) = 0 

whenever  =  = t  for some  t  X. 

Let xn = x', then Sxn → Sx', Txn → Tx' as n →∞.  

 

Therefore (2.1.7) and the continuity of D* give D*(STx',  TSx', TSx') = 0, which implies 

(2.1.8) STx' = TSx' = T2x' 

 If Tx′  T2x', then from (ii) we have  

(2.1.9) D*(Tx', T2x', T2x') ˂ β(x', Tx') 

 But by (2.1.6) and (2.1.8), we have  

β(x', Tx') = max {D*(Sx', STx', STx'), D*(Sx', T 2 x', T 2x'), D*(STx', T 2x', T 2x'),’                                                                                    

               [D*(S x', T 2x'’, T 2x'’) + D*(STx', Tx', Tx')]} 

                              = D*(Tx', T2x', T2x') 

 This contradicts (2.1.9) if Tx′  ≠ T2x'.  

 

Therefore Tx' = T2x’. Now Tx' = T2x' = T(Tx'), showing that Tx' =  z is a fixed point  of T.  

Further Sz = STx' = TSx' = T2x' = Tz = z. 

Therefore z is also a fixed point of S. Hence z is a common fixed point of S and T. 

Now we prove the uniqueness of the common fixed point. If possible assume that 

z' is another common fixed point of S and T. If z ≠ z', then from (ii) we have   

          D*(z, z', z') = D*(Tz, Tz', Tz') (z, z') 

  where β(z,, z') = max {D*(Sz, Sz', Sz'), D*(Sz, Tz, Tz), D*(Sz', Tz', Tz'), 

     [D*(S z, Tz', Tz') + D*(Sz',Tz,Tz)]} 

                     = D*(z, z', z'),  

This impossibility shows z = z'. 

Hence z is the unique common fixed point of S and T. 

As a consequence of Theorem 2.1, we have the following  
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2.2 Corollary: Suppose (X, D*) is a D*-metric space satisfying conditions (i), (ii), (iii) and (iv) 

of Theorem 2.1. Further, if (X, D*) is compact. Then S and T have unique common fixed 

point z. 

Proof: Since (X,D*) is  a compact D*-metric space, it is complete and  therefore for each 

x0 X and for any associated sequence {xn} of x0 relative to two selfmaps  such that the 

sequences {Sxn} and {Txn} converge to some z  X and hence condition (v) of Theorem 

2.1 holds . Also, if (X, D*) is compact D*-metric space, then f(x, y) is continuous function 

on the compact D*-metric space X2. Therefore we can find (p, q)  X2 such that  

f(p, q)  = , proving the condition (vi) of the Theorem 2.1. Hence by Theorem 

2.1, the corollary follows. 

 

2.3 Corollary ([5]):  Suppose S and T are two selfmaps of metric space (X, d) such that  

(i)     T(X) ⊆ S(X) 

(ii)      d(Tx, Ty) ˂ α(x, y) for all x, y  X.   

          where 

(ii)'     α(x, y) =max {d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)} 

(i)    S and T are continuous, 

 and  

(iv)   ST=TS, further if  

(v) X is compact. 

 

Then S and T have a unique common fixed point. 

 

Proof: Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If 

D1*(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, then (X,D1*) is a D*-metric space and   D1*(x, 

y, x) = d(x, y)  Therefore (ii) can be written as D*(Tx, Ty, Ty) (x, y) for all    x, y  X, 

where  

α(x, y) = max {D1*(Sx,Sy,Sy), D1*(Sx,Sx,Sx), D1*(Sy,Ty,Ty), D1*(Sx,Ty,Ty),     D1*(Sy, 

Tx,Tx)} which is the same as condition (ii) of Theorem 2.1. Also since (X, d) is complete, 

we have (X, D1*) is complete, by Corollary 1.13. 
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Now S and T are selfmaps on (X, D1*) satisfying conditions of Corollary 2.2 and hence the 

corollary follows. 
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