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ABSTRACT

The purpose of this paper is to prove a common fixed point theorem for two selfmaps on a D*—metric space
and deduce a common fixed point theorem for two selfmaps on a compact D*metric space. Further we
show that a common fixed point theorem for two selfmaps of a metric space prove by Brian Fisher ([5]) is
a particular case of our theorem.
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INTRODUCTION AND PRELIMINARIES

Fixed point theory is a fundamental area in nonlinear functional analysis, offering powerful tools
for solving a wide range of problems across mathematics and applied sciences. The pioneering
work of Banach on contraction mappings laid the foundation for this field. His celebrated fixed
point theorem guarantees the existence and uniqueness of fixed points for self mappings in
complete metric spaces and ensures convergence via Picard iteration. Over the decades, this
classical result has inspired numerous generalizations to broader classes of mappings and more
generalized spaces.

Different mathematicians tried to generalize the usual notion of metric space (X, d). In 1992 Dhage
[2] has initiated the study of generalized metric space called D- metric space and fixed point
theorems for selfmaps of such spaces. Later researchers have made a significant contribution to
fixed point of D- metric spaces in [1], [3], and [4]. Unfortunately almost all the fixed point
theorems proved on D-metric spaces are not valid in view of papers [6], [7] and [8].

Recently Shaban Sedghi, Nabi Shobe and Haiyun Zhou [9], have introduced D*- metric spaces as
a probable modification of D- metric spaces and proved some fixed point theorems.

146

INTERNATIONAL JOURNAL OF UNIVERSAL SCIENCE AND ENGINEERING



http://www.ijuse.in/

International Journal of Universal Science and Engineering http://www.ijuse.in

(IDUSE) 2016, Vol. No. 2, Jan-Dec e-ISSN: 2454-759X, p-ISSN: 2454-7581

Definition 1.1([9]): Let X be a non-empty set. A function D*: X*> — [0, o) is said to be a
generalized metric or D*-metric or G-metric on X, if it satisfies the following conditions

(1) D *x,y,z)>0 forall x,y, z € X.
(i1) D *Xx,y,z)=0ifand only if x =y =z.
(i) D*x,y,z)=D*(00(x,y,2z)) forallx,y,z€ X
where 6 (X, y , z) is any permutation of the set {x,y, z}.
iv) D*x,y,z)<XD*x,y,w)rD*w,z,z)forallx,y,z,weX.

The pair (X, D *), where D * is a generalized metric on X is called a D*—metric space or a
generalized metric space.

Example 1.2: Let (X, d) be a metric space. Define D1*: X® — [0, ) by
Di*(x,y, z) =max {d(X, y), d(y, z), d (z, x)} for x, y, z € X. Then (X, D1*) is a generalized
metric space.

Example 1.3: Let (X, d) be a metric space. Define D>*: X> — [0, ) by
Dy*(x,y, z) = d(x, y) + d(y, z) + d (z, x) for x, y, z € X. Then (X, D>*) is a generalized
metric space.

Example 1.4: Let X = R, define D*: R? — [0, ) by

%k =
D (X, Y Z) { max {x, Y, Z} otherwise

Then (R, D *) is a generalized metric space.

Note 1.5: Using the inequality in (iv) and (ii) of Definition 1.1, one can prove that if (X, D *)is
a D*—metric space, then
D *(x,x,y)=D *(x, y,y) for all x, y, € X.
Infact D *(x, x, y) <D *(x, x, x) + D *(x, v, ¥) = D *(x, y, y) and
D*(y,y,x)XD*(y,y,y)yrD*y,x,x)=D*y,x,x), proving the inequity.

Definition 1.6: Let (X, D*) be a D*-metric space. For x € X and r > 0, the set
Bp«(x, r) = {y € X; D*(x, y, y) <r} is called the open ball of radius r about x.
For example, if X =R and D*: R® — [0, o) is defined by
D*(X,y,z)=|x—-y|+|y—2z]|+ z-x|forall x,y, zeR. Then
Bo+(0, 1) = {y € R; D*(0, y, y) < 1}
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={yeR;2|y|<1}
={yeR;|y| <2} = (-4 7).

Definition 1.7: Let (X, D *) be a D*—metric space and £ C X.

(1) If for every x € E, there is a 0 > 0 such that Bp+ (x, 0 ) € E, then E is said to be
an open subset of X

(i)  Ifthereis a k> 0 such that D *(x, y, y) <k for all x, y € E then E is said to be D*—
bounded. It has been observed in [9] that, if 7 is the set of all open sets in (X, D*),
then 7 is a topology on X (called the topology induced by the D*—metric) and also
proved that Bp+ (x, 7) is an open set for each x € X and » > 0 ([9], Lemma 1.5). If
(X 7) is a compact topological space we shall call (X, D *) is a compact D*—metric
space.

Definition 1.8: Let (X, D *) be a D*—metric space. A sequence {Xn} in X is said to
(1) converge tox if D *(x,,x,,x)=D *(xn,x,x) > 0asn —oo
(i1) be a Cauchy sequence, if to each € > 0, there is a natural number no
such that D *(x, , x» , xm ) < € forallm ,n>no .

It is easy to see (infact proved in [9], Lemma 1.8 and Lemma 1.9) that, if {x,} converges to x in(X,
D¥*) then x is unique and that {x,} is a Cauchy sequence in (X, D*). However, a Cauchy sequence
in a (X, D *) need not be convergent as shown in the example given below.

Example 1.9: Let X=(0, 1]and D *(x, y,z)=|x-y |+ y—z|+]|z—x|forx,y z € X, so that
(X, D *) is a D*—metric space.

Define Xn = % for n = 1, 2, 3 , then
101
D*(xn, Xn, Xm ) =2 %Xn—Xm |=2| —- —, so that

D *(xn, Xn,xm ) — 0 asm,n— oo, proving {Xn} is a Cauchy sequence in (X, D*). Clearly
{xn} does not converge to any point in X.

Definition 1.10: 4 D*-metric space (X, D *) is said to complete if every Cauchy sequence in it
converges to some point in it.

It follows that the D*—metric space given in Example 1.9 is not complete.

Note 1.11: We have seen (In Example 1.2 and Example 1.3) that on any metric space (X, d), it is
possible to define at least two D*—metrics, namely Di* and D> *, using the metric d. We shall call
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D1 * and D; * as D*—metrics induced by d. Thus every metric space (X, d) gives rise to at least
two D*—metric spaces (X, D1 *) and (X, D>*). Also if (X, D *) is a D*—metric then defining do (x,
y) =D *(x,y,y) for x, y € X, we can show easily that (X, do) is a metric space and we shall call do
as a metric induced by D *.

The following result is of use for our discussion.

Theorem 1.12: Let (X, d) be a metric space and D; *(i =1, 2) be the two D*— metrics induced by
d (given in Example 1.2 and Example 1.3). For any i (=1, 2) a sequence {x,} in (X, D; *) is a
Cauchy sequence if and only if {x,} is a Cauchy sequence in (X, d).

Proof: - First note that for i =1, 2 we have
d(x,y)<Di*(x,y,y)< 2d(x,y)forallx,y €X.

Now the theorem follows immediately in view of the above inequality.

For example, if {x, } is a Cauchy sequence in (X, d ), then for any given € >0 choose a
natural number no such that m, n > no implies d (xm, x,) < E and note that for the same no we

have
m,n>ng implies Di *(Xm, Xn, Xn ) <2d (Xm Xn ) < €,
proving that {x, } is a Cauchy sequence in (X, D; *).

Similarly the other part of the theorem can be proved using the other inequality noted in
the beginning of the proof.

Corollary 1.13: Suppose (X, d) is a metric space. Let D * and D> * be two D*— metrics induced
by d, then for any i (=1, 2) the space (X, D; *) is complete if and only if (X, d) is complete.

Proof: - Follows from Theorem 1.12.

Definition 1.14: If (X, D*) is a D*-metric space, then D* is a continuous function on X>, in the
sense that lim,, .. D*(Xn, yn, zn ) = D*(X, y, z), whenever {(Xa, yn, zn)} in X° converges to (X, y, z)

€ X°. Equivalently,

My see X=X, My Vo= y, My 2=z & lim, . D*(Xn, Yn, Zn ) = D*(X, v, 2).

Notation: For any selfmap T of X, we denote T(x) by Tx.
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If S and T are selfmaps of a set X, then any z € X such that Sz = Tz = z is called a
common fixed point of S and T.

Two selfmaps S and T of X are said to be commutative if ST = TS where ST is their
composition SoT defined by (SoT) x = STx for all x € X.

Definition 1.15: Suppose S and T are selfmaps of a D*—metric space (X, D*) satisfying the condition
T(X) € S(X). Then for any x¢ € X, Txo € T(X) and hence Txo € S(X), so that there is a x; € X with
Txo= Sx1, since T(X) S S(X). Now Tx; € T(X) and hence there is a x, € X with Tx, € T(X) € S(X)
so that Tx; = Sx2. Again Tx; € T(X) and hence Tx; € S(X) with Tx>= Sxs. Thus repeating this
process to each xo € X, we get a sequence {X,} in X such that 7x, = Sxy+1 for n>0. We shall call
this sequence as an associated sequence of xo relative to the two selfmaps S and T. It may be
noted that there may be more than one associated sequence for a point xo € X relative to selfmaps
Sand T.

Let S and T are selfmaps of a D*-metric space (X, D*) such that T(X) € S(X). Forany X,
€ X, if {xa} is a sequence in X such that Tx,= Sxn+1 for n >0, then {x,} is called an associated
sequence of X relative to the two selfmaps S and T.

Definition 1.16 : A function @: [0,00) — [0,00) is said to be a contractive modulus, if A(0)
=0 and O(t) <tfort > 0.

Definition 1.17: A real valued function @ defined on X € R is said to be upper semi continuous,
if lim sup @(t.) <O (t) for every sequence {t,} in X with t, — tas n — 0.
n—-oo

Definition 1.18: If S and T are selfmaps of a D*-metric space (X, D*) such that for every sequence

{Xn} in X with lim Sx, = lim Tx, =t, we have
n—->oo n—->oo

lim D*(STxn, TSxn, TSxn) = 0, then we say that S and T are compatible.

n—-oo

THE MAIN RESULTS

Theorem. Suppose S and 7 are selfmaps of a D*-metric space (X, D*) satisfying the
conditions
1) T(X)cS(X)
(1) D *(Tx, Ty, Ty) <P (x,y) forallx,y € X,
where
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(i)' B (x,y ) = max{D *(Sx, Sy, Sy), D *(Sx, Tx, Tx), D *(Sy, Ty, Ty),
~[D*(Sx, Ty, Ty) + D¥(Sy, Tx, Tx)]}

(ii1)) S and T are continuous.
(iv)  the pair (S, T') is compatible,
and
(v)  there is a point xo € X and an associated sequence {x, } of xo relative to the two
selfmaps such that the sequences {7x, } and {Sx, } converge to some point z € X

Further, if
(vi)  there exists (p, q) € X* such that f(p, q) = ., 5z f (x,3)
where
D (5x.Ty.Ty)

(Vl) f(X9 y) = .El::-f_.}'}

then S and T have a unique common fixed point z € X.

Proof: First suppose that £(x,y) = 0 forall x,y € X, so that f(x, y) is well defined. Now
by the inequality (ii), we find that f(x, y) < 1 for all x, y € X. Hence if ¢ = f(p, q) then ¢ =
1, so that f(x, y) = c for all X, y € X and therefore D*(Tx, Ty, Ty)= ¢ 5(x.y)

From (v), we get

(2.1.1) Sxon, Tx2n, Sx2n+1 and Txon+1 =z as n — o0

Now, since S, T are continuous, we have by (2.1.1)
S?%on Sz, and STXan+1 =Sz as n —

Since the pair (S, T) 1s compatible, we have, in view of (2.1.1) that
lim,, .. D*(STx2n+1, TSX2n+1, TSX2n+1 ) =0,

TSxon+1—+ Sz as n—+ 0.

Also from (i1), we have
(2.1.2) D*(TSx2n+1, TX2n, Tx2n) < B(SX2n+1,X2n),
where B(SxXant1,X2n) = max { D*(S*Xan+1, SX2n, SX2n), D*(S*X2nt1, TSX2n, TSXon),

D*(SXan, Txon, TXan), 5[D*(S Xan+1, Txan, Tx2n) + D*(Sxan, TSXanr1, TSxue1)]}

which on letting n to oo and using the continuity of D* gives
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lim,, .. § (Sxon+1, TX2n) = max {D*(Sz, z, z), D*(Sz, Sz, Sz), D*(z, z, z),
= [D*(Sz 2, 2) + D*(Sz. 2, 2)]}
=D*(Sz, z, z)

Therefore letting n to ooin (2.1.2), and using the above we get
(2.1.3) D*(Sz, z, z) = D*(Sz, z, z).
Now, if Sz # z, then D*(Sz, z, z) > 0 and by the definition, we get D*(Sz,
z, z) < D*(Sz, z, z), contradicting (2.1.3)
Thus we have Sz = z.

Now again from (ii) we have
(2.1.4) D*(Tz,Tx2n, TX2n) < B(z,X2n)

where B(z,X2n)=max {D*(Sz,Sx2n,Sx2n), D*(Sz, Tz, Tz), D*(Sx2n, TX2n, TX2n),

% [D*(S z,Tx2n, Tx2n) + D*(Sx20,T2,TZ)]}, in which on
letting n to o and using Sz = z, the continuity of D* and the condition (v), we get
lim, .. f(z,X2n) = max {D*(Sz, z, z), D*(z, Tz, Tz), D*(z, z, z),

2 [D*(87,2,2) + DX(S2,2,2)]}
=D*(z, Tz, Tz)

Again letting n to ooin (2.1.4), and using the above we get D*(Tz,
z,7) = D*(Tz, z, z)

and this will be contradiction if Tz # z, therefore Tz = z. Thus z is a common fixed point
of Sand T.

To prove that z is unique, if possible suppose that z' is another common fixed point of S
and T. Then from (ii), we have
(2.1.5) D*(z, 7', z') =D*(Tz, Tz, TZ") < B(z, Z)
where B(z,,z'") = max {D*(Sz, 7, z'), D*(z, Tz, Tz), D*(Sz', TZ', TZ"),
> [D*(Sz 7, ) + DX(S7, Tz, T2)]}
=D*(z, 7, 7")
so that (2.1.5) gives D*(z, z, Z') = D*(z, z, z') and this will give a contradiction if z # Z'.
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Therefore z = Zz'. Thus z is the unique common fixed point of S and T.

Now suppose that B(x', y') =0 for some x',y' € X. Then

max {D*(Sx', Sy', Sy'), D*(Sx', Tx', Tx"), D*(Sy', Ty', Ty"),

%[D*(Sx‘, Ty', Ty") + D*(Sy', Tx', Tx")]} =0,

which implies
(2.1.6) Sx'=Tx'=Sy'=Ty'

Then STx' = S(Sx') = S?x' = SSy'. Since the pair (S, T) is compatible
(2.1.7) lim, .. D*(STXn, TSXn, TSxn) =0

whenever lim,,_,..5x,= lim,_..Tx,=t for some t € X.

Let x,= X', then Sx, — Sx', Txn — TX' as n —o.

Therefore (2.1.7) and the continuity of D* give D*(STx', TSx', TSx') = 0, which implies
(2.1.8) STx' = TSx' = TX'
If Tx' # T?x', then from (ii) we have
(2.1.9) D*(Tx', T%', T’x") < B(x', Tx")
But by (2.1.6) and (2.1.8), we have
B(x', Tx") = max {D*(Sx', STx', STx'), D*(Sx', T ?x', T %), D*(STx', T %', T *'),
~[D*(Sx, T ", T ") + D*(STx,, Tx', Tx)]}
= D*(Tx', T’x', T*x")
This contradicts (2.1.9) if Tx' # Tx".

Therefore Tx' = T>x’. Now Tx' = T>x' = T(Tx'), showing that Tx' = z is a fixed point of T.

Further Sz=STx'=TSx' =T*' =Tz =2z
Therefore z is also a fixed point of S. Hence z is a common fixed point of S and T.

Now we prove the uniqueness of the common fixed point. If possible assume that
7' is another common fixed point of S and T. If z # Z', then from (ii) we have

D*(z, 7, 2') = D*(Tz, Tz, TZ') < B(z, 2)

where B(z,,z') = max {D*(Sz, Sz', Sz'), D*(Sz, Tz, Tz), D*(Sz', TZ', TZ"),
= [D*(Sz, TZ, TZ) + D*(S2,TzT2)]}
=D*(z, 7, 7),

This impossibility shows z =7'.
Hence z is the unique common fixed point of S and T.
As a consequence of Theorem 2.1, we have the following
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2.2 Corollary: Suppose (X, D*) is a D*-metric space satisfying conditions (1), (i), (ii1) and (iv)

2.3

of Theorem 2.1. Further, if (X, D*) is compact. Then S and T have unique common fixed
point z.

Proof: Since (X,D*) is a compact D*-metric space, it is complete and therefore for each
xoEX and for any associated sequence {xn} of Xo relative to two selfmaps such that the
sequences {Sxn} and {Tx,} converge to some z € X and hence condition (v) of Theorem

2.1 holds . Also, if (X, D*) is compact D*-metric space, then f(x, y) is continuous function
on the compact D*-metric space X>. Therefore we can find (p, q) € X such that

f(p,q) = -:x,}-};;ﬁ f (x,¥), proving the condition (vi) of the Theorem 2.1. Hence by Theorem

2.1, the corollary follows.

Corollary ([5]): Suppose S and T are two selfmaps of metric space (X, d) such that
1) TX) < S(X)
(1) d(Tx, Ty)<o(x,y) forall x,y € X.

where
(i)' o(x,y) =max {d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}
(i) S and T are continuous,

and

(iv) ST=TS, further if

(v) X is compact.

Then S and T have a unique common fixed point.

Proof: Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If
Di*(x,y, z) = max{d(x, y), d(y, z), d(z, x) }, then (X,D1*) is a D*-metric space and Di*(x,
y, X) =d(x,y) Therefore (i1) can be written as D*(Tx, Ty, Ty) < a(x, y) forall x,y € X,
where

a(x, y) = max {D1*(Sx,Sy,Sy), D1*(Sx,Sx,Sx), D1*(Sy,Ty,Ty), D1*(Sx,Ty,Ty), Di1*(Sy,
Tx,Tx)} which is the same as condition (ii) of Theorem 2.1. Also since (X, d) is complete,
we have (X, D1*) is complete, by Corollary 1.13.
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Now S and T are selfmaps on (X, Di*) satisfying conditions of Corollary 2.2 and hence the
corollary follows.
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